45 research outputs found

    Towards Crew-Centered, Mission-Oriented Space Flight Training

    Get PDF
    This poster describes a training approach that applies empirically derived principles of training to reimagining the overall design of NASA's space flight training program. The poster is focused specifically on the design of astronaut training for NASA's future deep space, exploration missions to Mars. We briefly describe NASA's space flight training practices during the Apollo and Space Shuttle eras as well as NASA's current practices for training astronauts for their missions to the International Space Station. We provide an overview of NASA's current concepts for a mission to Mars to scope our training approach. We envision a new space flight training approach which we term crew-centered, mission oriented training, inspired by the design approach offered in the context of airline pilot training by Barshi. We apply research-based training principles reviewed by Kole and his colleagues, as well as by other researchers in training science, into real-world, practical guidelines for the particular context of training astronauts for a mission to Mars

    Evidence Report: Risk of Performance Errors Due to Training Deficiencies

    Get PDF
    The Risk of Performance Errors Due to Training Deficiencies is identified by the National Aeronautics and Space Administration (NASA) Human Research Program (HRP) as a recognized risk to human health and performance in space. The HRP Program Requirements Document (PRD) defines these risks. This Evidence Report provides a summary of the evidence that has been used to identify and characterize this risk. Given that training content, timing, intervals, and delivery methods must support crew task performance, and given that training paradigms will be different for long-duration missions with increased crew autonomy, there is a risk that operators will lack the skills or knowledge necessary to complete critical tasks, resulting in flight and ground crew errors and inefficiencies, failed mission and program objectives, and an increase in crew injuries

    The Effects of Blood Glucose Levels on Cognitive Performance: A Review of the Literature

    Get PDF
    The purpose of this review paper is to discuss the research literature on the effects of blood glucose levels on executive and non-executive functions in humans. The review begins with a brief description of blood glucose, how it has been studied, previous syntheses of prior studies, and basic results regarding the role of blood glucose on cognitive functioning. The following sections describe work that investigated the effect of blood glucose on both non-executive and executive functions (e.g., sensory processing, psychomotor functioning, attention, vigilance, memory, language and communication, judgement and decision-making, and complex task performance). Within each section, summaries of the findings and challenges to the literature are included. Measurement conversions of blood glucose levels, blood glucose values, and associated symptoms are depicted. References to the types of tests used to investigate blood glucose and cognitive performance are provided. For more detailed descriptions of references within (and in addition to) this paper, an annotated bibliography is also provided. Several moderator variables including individual differences and contextual variables related to the effects of blood glucose levels on performance (e.g., age, gender, time of day, familiarity with the task and symptom awareness, expectancy effects, dose dependent effects, time dependent effects, task specific effects, rising and falling blood glucose levels, and speed and/or accuracy trade-offs) are addressed later in the paper. Some suggestions for future experimental methodologies are also made

    Human-Centered Operations

    Get PDF
    Efforts to improve operational safety often focus on preventing human error. But humans don't just make mistakes. They do, in fact, make a tremendous contribution to operational safety, and there is much to learn from what goes right. To support people in their role, the operation should be human-centered. To make the operation human-centered, the framework of the 4Ps can be used to create a clear, coherent, consistent and comprehensive guidance

    Applying Research-Based Training Principles: Towards Crew-Centered, Mission-Oriented Space Flight Training

    Get PDF
    This chapter describes a training approach that applies empirically derived principles of training to re-imagining the overall design of NASAs space flight training program. The chapter is focused specifically on the design of astronaut training for NASAs future deep space, exploration missions to Mars. We briefly describe NASAs space flight training practices during the Apollo and Space Shuttle eras as well as NASAs current practices for training astronauts for their missions to the International Space Station. We provide an overview of NASAs current concepts for a mission to Mars to scope our training approach. We envision a new space flight training approach which we term crew-centered, mission oriented training, inspired by the design approach offered in the context of airline pilot training by Barshi (2015). We apply some of the training principles reviewed by Kole and his colleagues in the companion volume (Kole, Healy, Schneider & Barshi, 2019), as well as by other researchers in training science (e.g., Ericsson, Krampe, & Tesch-Rmer, 1993; Healy & Bourne, 2012; Salas, Wilson, Priest and Guthrie, 2006), into real-world, practical guidelines for the particular context of training astronauts for a mission to Mars.processes over very long retention intervals

    Human Factors in Training

    Get PDF
    Future space missions will be significantly longer than current Shuttle missions and new systems will be more complex than current systems. Increasing communication delays between crews and Earth-based support means that astronauts need to be prepared to handle the unexpected on their own. As crews become more autonomous, their potential span of control and required expertise must grow to match their autonomy. It is not possible to train for every eventuality ahead of time on the ground, or to maintain trained skills across long intervals of disuse. To adequately prepare NASA personnel for these challenges, new training approaches, methodologies, and tools are required. This research project aims at developing these training capabilities. Training efforts in FY07 strongly focused on crew medical training, but also began exploring how Space Flight Resource Management training for Mission Operations Directorate (MOD) Flight Controllers could be integrated with systems training for optimal Mission Control Center operations. Beginning in January 2008, the training research effort will include team training prototypes and tools. The Training Task addresses Program risks that lie at the intersection of the following three risks identified by the Project: 1) Risk associated with poor task design; 2) Risk of error due to inadequate information; 3) Risk associated with reduced safety and efficiency due to poor human factors design

    The Comprehensive LOFT

    Get PDF
    The training of pilots at major US air carriers has changed little over the years. These courses often begin in learning each and every sub-system of the particular airplane to be flown. The training course culminates in a series of training sessions in a full-motion, full-mission flight simulator. Most US airlines now incorporate one final simulator training session known as LOFT, Line Oriented Flight Training, where rather than going through a series of disconnected, isolated, flight maneuvers, the session is conducted as a flight from a departure airport to a destination airport. Flying for an Air Line, one is a Line Pilot, flying the "line." And so the LOFT session in the simulator is supposed to represent the reality of line operations and thus prepare the trainee to fly the line. But if the ultimate goal of the training is to produce a pilot who is ready to safely and efficiently fly the line, shouldn't all training be "line oriented"? This paper describes an approach to structuring airline flight training such that all training is "line oriented." This approach represents an opportunity to translate many of the training principles offered by Healy and her colleagues into training specifications

    Performance Support Tools for Space Medical Operations

    Get PDF
    Early Constellation space missions are expected to have medical capabilities similar to those currently on board the Space Shuttle and International Space Station (ISS). Flight surgeons on the ground in Mission Control will direct the Crew Medical Officer (CMO) during medical situations. If the crew is unable to communicate with the ground, the CMO will carry out medical procedures without the aid of a flight surgeon. In these situations, use of performance support tools can reduce errors and time to perform emergency medical tasks. The research presented here is part of the Human Factors in Training Directed Research Project of the Space Human Factors Engineering Project under the Space Human Factors and Habitability Element of the Human Research Program. This is a joint project consisting of human factors teams from the Johnson Space Center (JSC) and the Ames Research Center (ARC). Work on medical training has been conducted in collaboration with the Medical Training Group at JSC and with Wyle that provides medical training to crew members, biomedical engineers (BMEs), and flight surgeons under the Bioastronautics contract. Human factors personnel at Johnson Space Center have investigated medical performance support tools for CMOs and flight surgeons

    ISS Training Best Practices and Lessons Learned

    Get PDF
    Training our crew members for long-duration Deep Space Transport (DST) missions will have to be qualitatively and quantitatively different from current training practices. However, there is much to be learned from the extensive experience NASA has gained in training crew members for missions on board the International Space Station (ISS). Furthermore, the operational experience on board the ISS provides valuable feedback concerning training effectiveness. Keeping in mind the vast differences between current ISS crew training and training for DST missions, the needs of future crew members, and the demands of future missions, this ongoing study seeks to document current training practices and lessons learned. The goal of the study is to provide input to the design of future crew training that takes as much advantage as possible of what has already been learned and avoids as much as possible past inefficiencies. Results from this study will be presented upon its completion. By researching established training principles, examining future needs, and by using current practices in spaceflight training as test beds, this research project is mitigating program risks and generating templates and requirements to meet future training needs

    Human Factors in Training

    Get PDF
    Future space missions will be significantly longer than current shuttle missions and new systems will be more complex than current systems. Increasing communication delays between crews and Earth-based support means that astronauts need to be prepared to handle the unexpected on their own. As crews become more autonomous, their potential span of control and required expertise must grow to match their autonomy. It is not possible to train for every eventuality ahead of time on the ground, or to maintain trained skills across long intervals of disuse. To adequately prepare NASA personnel for these challenges, new training approaches, methodologies, and tools are required. This research project aims at developing these training capabilities. By researching established training principles, examining future needs, and by using current practices in space flight training as test beds, both in Flight Controller and Crew Medical domains, this research project is mitigating program risks and generating templates and requirements to meet future training needs. Training efforts in Fiscal Year 09 (FY09) strongly focused on crew medical training, but also began exploring how Space Flight Resource Management training for Mission Operations Directorate (MOD) Flight Controllers could be integrated with systems training for optimal Mission Control Center (MCC) operations. The Training Task addresses Program risks that lie at the intersection of the following three risks identified by the Project: 1) Risk associated with poor task design; 2) Risk of error due to inadequate information; and 3) Risk associated with reduced safety and efficiency due to poor human factors design
    corecore